Solutions Exam - Topics in Probability and Statistics (WMMAO039-05) 2022/2023

Date and time: January 24, 2023, 18.15-20.15

Exercise 1

Consider the infinite sites variant of the standard Wright-Fisher model on 2N haploid
individuals of which we analyse a segment of a chromosome in a uniform sample of size
n. Assume that n << 2N and that you can use Kingman’s Coalescence to obtain the
geneology of the sample. Let 1 be the mutation probability per generation per individual
(in the segment under consideration) and let § = 4N p.

Let S,, be the number of segregating sites in the sample. Let h, = Z;:ll 1/5 and

define § = Sn/hn.

(a) Show that 0 is an unbiased estimator of 0. That is, show E[f] = 6.

(b) Compute the variance of §. You may use without proof that for random variables

X and Y we have Var(X) = E[Var(X|Y)] + Var(E[X|Y]).
Solution

This is Therorem 1.22 of book, and requires proof of Theorems 1.20 and 1.21
Because we consider the infinite sites model, the number of segregating sites is equal to
the number of mutations in the genealogy from the most-recent common ancestor on. We
can use Kingman’s coalescence and use that this is a Markov process and the time until
the next “merging” if there are now k lineages (say T}) is exponentially distributed with
expectation 2/[k(k — 1)]. If there are k lineages, mutations occur according to a Poisson
process at rate k X 2Npu = kf/2. So the expected number of mutations while there are k
lineages in the genealogy is [k0/2] x 2/[k(k — 1)] = 6/(k — 1). The expected number of
mutations in the genealogy of a sample of size n is therefore

E[S,] =0/(n—1)+0/(n—1) 1)+ +0/(2—1) = Oh,

A

and thus E[f] = 0, which is what we should prove in part (a).

To compute the variance we denote the total number of mutations while there are k
lineages in the genealogy by M, and by independence of mutations in the different parts
of the geneology

VarlS,| = z”: Var(My) = Zn: (E[Var(Mg|Ty)] + Var(E[M|Ty]),

k=2

Note that Var(Mg|Ty) = (0/2)kT; and E[M|T;] = (0/2)kT}, because mutations occur
according to a Poisson process with intensity /2 on the genealogy. Furthermore, E[T}] =
2/[k(k — 1)] and Var(Ty) = 4/[k*(k — 1)?]. This leads to

n n

VarlSi = 3 ((0/2KE[T] + (6/2KVar(Ti) =6 = +67 ﬁ

k=2

and Var(0) = 0/h, +6* 3, 52/ (hn)?.



Exercise 2

Consider the following adaptation of the Wright-Fisher model. The 2N individuals in
generation ¢ (for ¢ € Z) independently have a geometrically distributed number of children
with mean 1/p (and thus variance (1 — p)/p?®), where p € (0,1). That is, the number of
children of an individual is distributed as the random variable X, with

P(X =k)=p(1—p)k! for k=1,2,---

Then immediately upon birth all but 2V uniformly chosen (without replacement) children
of the individuals in generation ¢ die. The remaining 2N individuals survive and form
generation ¢ + 1.

The probability that two uniformly chosen individuals (without replacement) from
generation £+ 1 have the same parent converges in probability to a constant as 2N — oo.

(a) Compute the limiting probability that two uniformly chosen individuals (without

replacement) from generation ¢ + 1 have the same parent?

(b) How many generations should go in a time unit to obtain Kingman’s coalescent as

the large population limit of the genealogy of a sample of finite size?
Solution

This problem is closely related to claim in first 10 lines of page 126 of book.
The probability that 2 uniformly chosen individuals out of all children of generation ¢
individuals have the same parent is the same as the probability that 2 uniformly chosen
individuals out of a uniformly chosen subset of size 2N from all children of generation ¢
individuals have the same parent.

Let X; be the number of children (surviving or not) of the i-th individual in generation
t So conditioned on Xy, - -+, Xon, the probability that 2 uniformly chosen individuals from
generation t + 1 have the same parent is
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By the weak law of large numbers the numerator of the Right hand side converges in
probability to

1l—-p 1 1 21—
p_1,1_ ( 229))
p P p

E[X(X — 1)] = Var(X) — E[X] + (B[X])? =

while the denominatior of the second factor of the Right hand side converges in probability
to (1/p)?. If you want to be completely formal, you can now use Skorohod’s representation
theorem to show that the answer to the exercise is 552(1 — p).

This means that if there are N/(1—p) generations in a time unit, each pair of lineages
merges at rate 1 per time unit and Kingman’s coalescent is obtained.



Exercise 3

Consider the Moran-model with selection: We consider a population of constant size
of 2N haploid individuals. Suppose that a mutation occurs (say at time 0) which gives
the mutant a selection advantage. Further assume that no other mutations occur. Non-
mutants give birth to a copy of themselves independently at rate 1, while mutants give
independently birth to copies op themselves at rate 1+ s, where s is strictly positive, but
very small. At the moment an individual is born (mutant or non-mutant) a uniformly
chosen individual from the population present just before this birth, dies.

Compute the probability of fixation. That is, compute the probability that at some

time in the future all 2N individuals will carry the mutation.
Solution

This is Theorem 6.1 of book

Because we are considering the Moran model with probability 1, there are no simultanious
births and the number of mutants changes at most by 1 at a time. If there are ¢ mutants
at present the rate at which a mutant gives birth multiplied by the probability that the
new-born replaces a non-mutant (i.e. the rate at which the number of mutants increases
by 1) is given by
2N —i

2N
while the rate at which a non-mutant gives birth multiplied by the probability that the
new-born replaces a mutant (i.e. the rate at which the number of mutants decreases by
1) is given by

bzz(l—l—s)zx

= (2N —i .
di= N =) x 58—

If we look at the embedded discrete time Markov Chain, we obtain a random walk with
1 =piic1 =piiy1 =bi/(bi+d;)) =(1+s)/(2+s) fori =1,2,--- ;2N — 1. Let h; be the
probability that the random walk reaches 2N before reaching 0 if the random walk starts
in state 2. Note that the answer to the exercise is h;. Further, hy = 0 and hsoy = 1 and

1+s 1
hi: .4 hl i3 — hi, :—hl —hi, f :1,2,,2N—1
Pii+1i+1 + Dii—17i—1 21 s +1+2+s 1 or ¢
Rearanging gives
1 1 1
hiy1—hi=——"h; —hi—1)=---= -(hy — hy) = -hy.
i 55 1) (1+@51 0) (1+s)i "
To compute hy, we observe
2N—1 2N—1
1 1—(1+s)7 2N
1 =hony = hoy — hg = hiv1 —h;)) =h - =h
2N 2N 0 ;( +1 ) 1;(1+3)Z 11—(1+s)—1

So hy = s/[1 45— (14 5)"CN-1),



Exercise 4

For parts (a) and (b), consider the infinite sites model of the standard Wright-Fisher
model on 2N haploid individuals, with a uniform sample of size n = 5.

We read out the nucleotides at the sites of a segment of a chromosome on which
recombination is not possible. The segregating sites in our sample are denoted by letters

Cl,b,'

- ,1 and the nucleotides on those sites for the different individuals are given in the

following table.

(a)

Individual \ Sites | a b ¢ d e f g h i

1 C A CA A CA A A

2 A C C A A CC A A

3 C A CA A C A A A

4 AA A CCA A CA

5 AAA CA A CC A C
Assume that the nucleotides on sites a,--- ,7 of the most recent common ancestor

of the sample are all A’s. Draw a geneology of the sample. include the possible
locations of the mutations in it (with their site label), that leads to the above table.
Hint: The answer does not necessarily allow for both depiction of individuals 1 to

5 in that order and for a depiction of the genealogy without crossing lineages.

Now assume that you do not know the nucleotides on sites a,--- ,7 of the most
recent common ancestor of the sample. Draw a geneology for which the most recent
common ancestor of individual 1 and 3 is the same as the most recent common
ancestor of the entire sample, but still leading to the above table. What are the

nucleotides on sites a, - - - , 7 of the most recent common ancestor of the entire sample,
based on this geneology?

Assume that in another population, we take a sample of size n = 5, and we obtain
the following table giving nucleotides at all 10 segregating sites in the sample.

Individual \ Sites [a’ b ¢ d° ¢ { g h {1 j
1 C A C A A CA A A A
2 A C A A A A C A A A
3 A A A A A A A A AC
4 AA A CCAACAA
5 A A A A A A A A CA

Assume that you know that this second population was either exponentially growing
or exponentially decaying, but that apart from that the assumptions of the Wright-

Fisher model apply to the population. Based on the nucleotides on sides a’,-- -, j’
is it more likely that the population is exponentially growing or exponentially de-
caying? Argue why.



Solution

(a) From site a we can deduce that 1 and 3 have a common ancestor who is not an
ancestor of any of the other individuals. From site g we can deduce that individuals 2 and
5 have a common ancestor who is not an ancestor of any of the other individuals. From
site ¢ we then deduce that individuals 1,2,3,5 have a common ancestor that is not an
ancestor of site 4. This gives a genealogy. Mutations a occurs in line segment from which
only 1 and 3 descend. mutation b occurs in line segment from which only individual 2
descents etc.

(b) Note that individual 1 and 3 are identical, and since their most recent common
ancestor is the most recent common ancestor of the entire sample, the most recent common
ancestor of the population should be identical on the segregating sites to indivduals 1 and
3, because any mutation on line segments leading from this most recent common ancestor
to individual 1, will cause individual 1 and 3 to differ from eachother. By site g, 2 and
5 must have common ancestor that is not an ancestor of other individuals in the sample.
Similarly by site a, individuals 2,4 and 5 must have common ancestor that is not an
ancestor of sites 1 and 3. Any genealogy that satisfies these conditions is a correct answer
to the exercise.

(c) All segregating sites have either 1 or 4 mutations. This implies that the total
length of line segments in genealogy from which 2 or 3 individuals in sample descent is
small. This in turn implies that the genealogy is star-shaped which is expected in a (fast
enough) growing population, where longer ago the population was smaller, and “merging”
events were more likely in the past. In a declining population, merging of lineages (going
backward in time) becomes less and less frequent and a star-shaped genealogy is unlikely.



